Twisting 2-cocycles for the Construction of New Non-standard Quantum Groups
نویسندگان
چکیده
We introduce a new class of 2-cocycles defined explicitly on the generators of certain multiparameter standard quantum groups. These allow us, through the process of twisting the familiar standard quantum groups, to generate new as well as previously known examples of non-standard quantum groups. In particular we are able to construct generalisations of both the Cremmer-Gervais deformation of SL(3) and the so called esoteric quantum groups of Fronsdal and Galindo in an explicit and straightforward manner.
منابع مشابه
Nonstandard Quantum Groups Associated to Certain Belavin-drinfeld Triples
A construction is given of a family of non-standard quantizations of the algebra of functions on a connected complex semi-simple algebraic group. For each “disjoint” triple in the sense of Belavin and Drinfeld, a 2-cocycle is constructed on certain multi-parameter quantum groups. The new non-standard quantum groups are the Hopf algebras obtained by twisting the known quantum groups by these 2-c...
متن کاملTwisting cocycles in fundamental representaion and triangular bicrossproduct Hopf algebras
We find the general solution to the twisting equation in the tensor bialgebra T (R) of an associative unital ring R viewed as that of fundamental representation for a universal enveloping Lie algebra and its quantum deformations. We suggest a procedure of constructing twisting cocycles belonging to a given quasitriangular subbialgebra H ⊂ T (R). This algorithm generalizes Reshetikhin’s approach...
متن کاملA Method of Construction of Finite-dimensional Triangular Semisimple Hopf Algebras
The goal of this paper is to give a new method of constructing finite-dimensional semisimple triangular Hopf algebras, including minimal ones which are non-trivial (i.e. not group algebras). The paper shows that such Hopf algebras are quite abundant. It also discovers an unexpected connection of such Hopf algebras with bijective 1-cocycles on finite groups and set-theoretical solutions of the q...
متن کاملDifferential Calculi over Quantum Groups and Twisted Cyclic Cocycles
We study some aspects of the theory of non-commutative differential calculi over complex algebras, especially over the Hopf algebras associated to compact quantum groups in the sense of S.L. Woronowicz. Our principal emphasis is on the theory of twisted graded traces and their associated twisted cyclic cocycles. One of our principal results is a new method of constructing differential calculi, ...
متن کاملCocycle Knot Invariants from Quandle Modules and Generalized Quandle Cohomology
Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Graña. We specialize that theory to the case when there is a group action on the coefficients. First, quandle modules are used to generalize Burau representations and Alexander modules for classical knots. Second, 2-cocycles valued in non-abelian groups are us...
متن کامل